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Linear superalgebra Lie superalgebras

. . 0
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Vector superspace

V:V()@Vi, ZQZ{(_),i}

Homogeneous elements: x € V53U V;
x € Vg is called even, |x| = 0;
x € V5\{0} is called odd, |x| = 1;

The vectors ey, ..., enrm form a basis of V if ey, ..., e, is a basis of
V5 and ent1, ..., €n4-m is @ basis of Vj

dim V = dim V5| dim V§ = n|m
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Linear superalgebra Lie superalgebras

. . 0
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

V and W are vector superspaces = V ® W is a vector superspace:
(Ve W) = (V5o W) o (Vi ® W)

(Ve W) = (Ve W) e (Ve W)
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Linear superalgebra Lie supera

. . 0
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

V and W are vector superspaces = Hom(V, W) is a vector

superspace:
Hom(V, W)z = Hom(V5, W5) @ Hom( V5, Wj)

= {f € Hom(V, W)} |f(x)] =|x|}  (morphisms)
Hom(V, W); = Hom(V3, W;) & Hom( V5, W;)

= {f € Hom(V, W)} If(x)| = |x| +1, x #0}
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Linear superalgebra Lie superalgebras

. . 0
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

For V = V5 ® Vj consider the superspace

nv = (I'IV)(-)GB(I'IV)i = Vi@ Vﬁ
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Linear superalgebra Lie superalgebras

. . 0
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

A vector supersubspace W C V is a vector subspace that is a

vector superspace such that
W = W@ D Wi

and

W(—) - V(), WI C Vi-
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Linear superalgebra Lie superalgebras

. . 0
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Superalgebra
A= A(—) D Ai

CARA— A
€ Homz(A® A, A), e |x-y|=|x|+ |yl

In other words,

A()-A(), Ai-AICA(), A(-)-Ai, AT-A(‘)CAT.
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Linear superalgebra Lie superalgebras

. . 0
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

A superalgebra A is called commutative if

xy = (_1)\X|\y|yx,

x,y € VgUW.
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Linear superalgebra Lie superalgebras

. . 0
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Sign rule:

If in a formula something of a parity p moves through something

of a parity q, then the sign (—1)P9 appears.

Example. Commutative algebra: xy = yx;

commutative superalgebra: xy = (—1)XII¥lyx.
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Linear superalgebra Lie superalgebras

. ) 5
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Important example. The Grassmann superalgebra A(m):

Consider the algebra A(m) with the generators 1,&1, ..., &mn and the

relations
50455 + gﬂfa =0

In particular, €2 = 0. Any f € A(m) has the form

F=h+> > faeababan fofaa ER

r=11<a1 < <a,<m

Let [1] =0, |¢4] =1 and assume |xy| = |x| + |y|. Then A(m)

becomes a commutative superalgebra.
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Linear superalgebra Lie superalgebras

. . 0
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

We may start with the vector space R with a basis &1, ..., &m,

than the exterior algebra
A(m) = @™ AN R™
together with the Z,-grading
/\(m) — \even @ /\odd

is the Grassmann superalgebra.
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Linear superalgebra Lie superalgebras

. . 0
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Lie superalgebra:

9=95 D91,

[ ]l:a®@a—g, [xyll=Ixl+lyl

1) Ix.y] = —(=1)My, x]

2) [[x, y], 2] + (= 1)XIW D]y 2], x] + (1) =Dz, X, y] = 0

= gg is a Lie algebra and g7 is a gg-module
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Linear superalgebra Lie superalgebras

. ) 5
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

More about the sign rule:
Consider auxiliary anticommuting odd parameters 71, ..., .

If x1, x2... are odd elements, replace them by 71x1, n2x2..., and do
all computations as usually with even elements. No need to
remember the sign rule! Note that then we work not over R, but

over A(N).
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Linear superalgebra Lie superalgebras

. ) 5
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Example: get the definition of a commutative superalgebra:

X,y € Ag, u,v € Ay. Consider x, y, niu,nav.
x(mu) = (mu)x = mxu = nux = xu = ux

(mu)(mav) = (m2v)(mu) = mnauv = mnvu

= MUV = —MmM2vU = UV = —vu
Recall that zw = (—1)#"lwz,  z,w e A

Similarly for a Lie superalgebra g, let u, v € gi, then

[mu,mev] = —[nav,mu] = mnalu, vl = —nam[v, u]
= mnelu, v] = mn2[v, u] = [u, v] = [v, u].
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Linear superalgebra Lie superalgebras
Lie superalgebras of vector fields on R®/™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Example. K =R or C, K™ = K" @ M(K™)

gl(nlm,K) =

al(n|m, K)g = (n,K) & gl(m,K)

gl(n|m); = ~ (K" @ (K™)7) © (K")* @ K™)
c 0

[X,Y] = XY — (=1)XIVlyx
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Linear superalgebra Lie superalgebras

. ) 5
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

A B
Example. Let M = € gl(n|m,R).
Cc D

Define the supertrace strM = trA — trD.

sl(n|m,R) = {M € gl(n|m,R)|strM = 0}.

If m # n, then sl(n|m,R) is simple.

For m = n the Lie superalgebra ps((n|n,R) = sl(n|n,R)/REz, is

simple (but it is not a supersubalgebra of gl(n|m, R)).
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Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Example from differential geometry. Let M be a smooth manifold,
X a fixed vector field on M and Q*(M) = &7_,Q%(M) the space

of differential forms on M. The R-linear operators
d, Lx, ix : Q" (M) — Q*(M)
satisfy
Lx =ixod+doix, Lxoix=ixolx, Lxod=doly.
Let g = g5 @ 97, 95 = RLx, g7 = Rd @ Rix.

Then g is a Lie superalgebra with the only non-zero Lie
superbracket

d,ix] = L.

Anton Galaev Intoduction to Supergeometry



Linear superalgebra Lie superalgebras
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Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Bilinear forms on a vector superspace.

Let g: V® V — R be a bilinear form on the superspace V.
g is symmetric if g(y,x) = (—=1)*Vg(x, y);

g is skew-symmetric if g(y,x) = —(—1)X¥Vg(x, y);

g is even if g(V5, V§) = g(Vi, V5) = 0;

g is odd if g(V5, V5) = g(V4, V§) = 0
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Linear superalgebra Lie superalgebras
Lie superalgebras of vector fields on I

0| m

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Let g be an even non-degenerate symmetric on
Rn\m =R"'® |—|(}Rm)v
ie. g(R", M(R*)) = g(N(R*),R") =0,

the restriction of g to R” is non-degenerate and symmetric (with

some signature (p,q), p+ q = n),

the restriction of g to MN(R™) is non-degenerate and

skew-symmetric, i.e. m = 2k.

The orthosymplectic Lie superalgebra

0sp(p. q2k); = {€ € gl(n[2k, R);| g(€x, y) +(~1)¥g(x, ¢y) = 0}.
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Linear superalgebra Lie superalgebras 5
Olm

Lie superalgebras of vector fields on I
About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Let e.g. the restriction of g to R"” be positive definite

1, 0 0

8= 0 0 1,
0 -1, O
Then,
A B B>

~Bf G -Ct

osp(p, q2k) = (so(p, q) @ sp(2k, R)) & RP9 @ R
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Linear superalgebra Lie superalgebras
L g ,0|m
ie superalgebras of vector fields on |

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Consider an odd non-degenerate supersymmetric form g on
R7" = R @ M(R"), i.e. g(R",R") = g(N(R"),N(R")) =0, and
g(x0,x1) = g(x1,x0) for all xp € R", x; € M(R").

There exists a basis of R” @ IN(R") such that g =
1, 0

The periplectic Lie superalgebra:

A B
pe(n,R) = B=-B',C=CCt
Cc At

pe(n,R) = gl(n,R) & (S°R" ® A*(R")")

spe(n, R) = pe(n,R) Nsl(n|n,R) is simple.
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Linear superalgebra Lie superalgebras

. . 0
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Consider an odd non-degenerate skew-symmetric form g on

R" @ MN(R"). There exists a basis of R” & M(IR") such that

k A B t t
pek(n,R) = B=B!C=-C
C —At

pe(n,R) ~ pe(n, R).
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Linear superalgebra Lie superalgebras
L g ,0|m
ie superalgebras of vector fields on |

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Let J be an odd complex structure on R”" = R" & M(R"), i.e. Jis

an odd isomorphism of R" & M(R") with J2 = —id.

The queer Lie superalgebra q(n, R) is the subalgebra of gl(n|n, R)

commuting with J.

1
There exists a basis of R” @ IN(R") such that J = !
-1, O
Then,
A B A B
q(n,R) = , sq(n,R) = trB = 0
B A B A

psq(n,R) = sq(n,R)/REy, is simple.
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Linear superalgebra Lie superalgebras

. . 0
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Examples of exceptional simple Lie superalgebras:
g=G(3), gg=G(2)@sl(2,C), g7;=C"®C?%

g=F(4), g5=-spin(7)®sl(2,C), g7;= C8 @ C2.
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Linear superalgebra Lie superalgebras

. . 0
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Let V be a purely odd vector space, i.e. V = Vj. By definition,
S2v*={b: V@V = R|b(x,y) = (1) ¥ b(y, x)},
but |x| = |y| = 1, if x,y # 0. This shows that b(x,y) = —b(y, x),
S2vr = A’V S2v = A’Nv.

Similarly,
A2V = S?nv.
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Linear superalgebra Lie superalgebras
Lie superalgebras of vector fields on ROIm

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

The odd vector superspace R°™ as the first example of a
supermanifold 0 Consider R"”. This is both a vector space and a
smooth manifolds. The algebra of smooth functions on R”

contains the dense subset of polynomial functions:

S*(R")" = DS (R)" € C(R).

Consider the odd vector space R™ = MMR™. Then

S*(MR™)* = 372, SH(MR™)” = BFoA (R™)* = A*(R™)" = A(m).
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Linear superalgebra Lie superalgebras
Lie superalgebras of vector fields on ROIm

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

By this reason,
C(RO™) = A(m).
Any f € C®(R%™) has the form

F=h+d, D faal™ € fofaa €R.

r=11<a1<---<a,<m

The functions £ should play the role of coordinate functions on

the " manifold” RO™. But
gl +efer =0, (€77 =0,
i.e. these coordinate functions can not take real values (except 0).

Since the coordinate functions should parametrise the points, we

manifold

Anton Galaev Intoduction to Supergeometry




Linear superalgebra Lie superalgebras
Lie superalgebras of vector fields on ROIm

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

By definition, R%™ is a supermanifold of superdimension O|m; it is
a pair

RO = ({0}, A(m)),
where 0 is the only point of R%™ and A(m) is the algebra of

superfunctions on ROI™,

Define the value at the point 0 of the superfunction f € C>(R%™)
of the form

F=h+Y, >, faal™ Y, fo,faa €R

r=11<aq1<--<a,<m

by

f(0) :=fy e R.
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Linear superalgebra Lie superalgebras
Lie superalgebras of vector fields on ROIm

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Consider the tangent space
ToR™ = {A: C2(RO™) = R| A(fg) = (Af)g(0)+(~1)*I"7(0)(Ag)}.
Exercise. The odd vectors (094 )o acting by (0n)of = (0uf)o form a

basis of ToR%™, ie.

ToR™ = ROI™.
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Linear superalgebra Lie superalgebras
Lie superalgebras of vector fields on ROIm

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Vector fields on ROI™:

Troim = {A: C(RI™) — CX(RO™) | A(fg) = (Af)g+(—1) 411 f(Ag)}.

Define the odd vectorfields a% = O, assuming 9, &P = 55
Exercise. Tgoim = N(m) ®g spang {0y, ..., Om} = N(m) @r ROI™.
Define the Lie superbrackets by

[A,B]=AoB—(-1)AIBIBo A,

The Lie superalgebra Troim with this brackets is denoted by
vect(0|m, R). It is a finite-dimensional Lie superalgebra. For m > 2

it is simple.
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Linear superalgebra Lie superalgebras
Lie superalgebras of vector fields on ROIm

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

For X = X®0 € vect(0|m, R) define its divergence

divX =) (=1)X"g,x.

Define the special (divergence-free) vectorial Lie superalgebra

svect(0]m) = {X € vect(0|m,R) | divX = 0}.

It is simple for m > 3.
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Linear superalgebra Lie superalgebras
Lie superalgebras of vector fields on ROIm

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Let m = 2k. Consider the 2-form w = Zgzl dé® o détk. Assume

|de®| =0, de* o deP = dePdee.

Define the Lie superalgebra of Hamiltonian vector fields

h(0]2k,R) = {X € vect(0]2k, R) | Lxw = 0}.

The Lie superalgebra h(0]2k, R) = [h(0|2k, R), H(0]2k, R)] is

simple.
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Linear superalgebra Lie superalgebras

Lie superalgebras of vector fields on R°!™
About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Classification of finite dim. simple complex Lie superalgebras:

e classical type, i.e. the gz-module g7 is completely reducible

sl(n|m, C), psl(n|n, C), osp(n|2m, C), pe(n,C), G(3), F(4),...

e Cartan type
vect(0|n, C), svect(0|n, C), h(0]2k,C)...

V. G. Kac, Lie superalgebras. Adv. Math., 26 (1977), 8-96.

L. Frappat, A. Sciarrino, P. Sorba, Dictionary on Lie
Superalgebras, arXiv:hep-th/9607161
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Linear superalgebra Lie superalgebras
Lie superalgebras of vector fields on ROIm

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Peculiarities:

e zero Killing form e.g. on psl(n|n, C), pe(n, C);
e in general no total reducibility of simple LSA,;
e semisimple LSA are of the from Y g; @ A(n;);

e there exist non-trivial irreducible representation of solvable LSA
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Linear superalgebra Lie superalgebras

. ) 5
Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

The state of a quantum mechanical system is represented by a unit
vector (defined up to a phase, i.e. a complex number of length 1)

in a complex Hilbert space H.

Let H describe the state of a single particle. Then the states of

two identical particles v and v’ is described by the tensor product
H®H.

Since the particles are identical, the states

/!

veav and V®v

must be the same.
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Linear superalgebra Lie superalgebras
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Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

But the state is defined up to a phase, consequently
Veov=lrev.

Applying this twice, we get A\2 =1, i.e. A = 1.

If A =1, then the particle is called boson. Two identical bosons

are described by a vector in S?H.

If A = —1, then the particle is called fermion. Two identical

fermions are described by a vector in A’H.
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Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

To unify the bosons and fermions consider the Hilbert superspace
H = H(—) b Hi?

Where Hg describes a boson and M1Hj describes a fermion.

Then
S?H = S*Hs P Hy @ Hi 5 S*Hi.
But 52Hi = /\2|_|Hi.
Thus the summands of S2H describe two bosons, or a boson and a

fermion, or two fermions.

The sign rule of superalgebra encodes the statistics of a particle!
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About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Let A be a supercommutative superalgebra and M be a real vector

superspace.

M is a left A-supermodule if there exists a morphism

':A®RM_>M1 (a,x)»—>a-x, |a'X’:|a|+|X"

M can be also considered as a right A-supermodule if we put

X-a= (—1)‘X|‘a‘a - X.
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About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Let M and N be A-supermodules.

A homogeneous map ¢ : M — N is called A-linear if

p(ax) = (=1)1ap(x).

Equivalently,
p(xa) = p(x)a.

Denote by Homa(M, N) the vector superspace of all A-linear maps

from M to N, and set Enda(M) = Homa(M, M).
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About quantum particles and supersymmetry
Modules over supercommutative superalgebras

We say that M over A is free of rank n|m if there exists a basis
€1, ..., enym of M over A such that ey, ...,e, € Mg and

€nt1s -+ €ntm € My.

This means that for any x € M there exist x!,...,x"™ € A such

that

n+m

X = E x%e,.
a=1
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About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Let M and N be free A-supermodules of ranks m|n and r|s. For an
A-linear map ¢ : M — N define gog €A a=1,...n+m,
b=1,...,r+ s such that

r—+s

plea) = D foiph-
b=1

We get an r + s X n+ m matrix with elements from A.
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About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Let x =Y M ex? € M, y = o(x) = Y}t foy® € N then

n+m n+m

n+m r-+s
p(x) = Z x| =D plea)x® =3 > fuplx’
a=1 a=1 b=1
We get that
n+m
b b
y = Z Soaxa
a=1
In the matrix form
y! Yl Prem xt
yrte P o) X
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About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Since we have the decompositions M = Mg & Mz and

N = Ng @ Nj, the map ¢ can be divided into 4 parts. According to

that we may write

1 1
©1 o Pnam

S
= ol
ol Ql
S
=1 ol
=1 Ll

r+s r—+s
¥1  Prtm

@ is even if and only if the entries of the matrices @55 and g7 are

even and the entries of the matrices 15 and @57 are odd.
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Lie superalgebras of vector fields on R°!™

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

The dual space: M* = Homa(M, A).

For ¢ € Homa(M, N) define ¢* € Homa(N*, M*),
p*() = (1)l o .

Then the matrix of ¢* w.r.t. the dual bases f,” and e} has the

form (exercise)

55 (—1)l ks
(—1)¥lefs i1
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About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Let L be an r +s X n+ m matrix with elements form A

g Lg

=1

Lp Li1
(i.e. it can be the matrix of a homomorphism from M to N)

We say that L is even if the entries of the matrices L5 and Lij are

even and the entries of the matrices Lig and Lgj are odd.

Define the supertransposed matrix

L|+1
(—1)HLg L3
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About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Consider set Mata(n|m) of all squire matrices of order n + m with
elements from A. It becomes an A-supermodule with respect to

the multiplication

algg algz

(-1)l?laLyg  (—1)l*laLg;

al =
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About quantum particles and supersymmetry
Modules over supercommutative superalgebras

For a homogenious L = define the supertrace

Lip Lz

strL = tr L()() — (—1)“" tr Lﬁ.

Proposition. str([K, L]) = 0.
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About quantum particles and supersymmetry
Modules over supercommutative superalgebras

The group
GLa(n|m) = {L € Mata(n|m)||L| =0, L is invertible}

is called general linear supergroup of rank n|m over A.
Example. GLr(n|m) = GL(n,R) x GL(m,R).

Theorem. Let L € Mata(n|m). Then L € GLa(n|m) if and only if

Lgg and Li7 are invertible.
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About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Boo  Bo1 . .
Let B = be a usual real matrix. Suppose that Bys is

Bio B
invertible, then

1 By Bt Boo — Bo1Bi'Bio 0
0 1 Bio B11

consequently,

det B = det(Bgo — Bo1By;' Bio) - det By;.
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About quantum particles and supersymmetry
Modules over supercommutative superalgebras

For L € GLa(n|m) define its superdeterminant or Berezian
BerL = det(Lg5 — Lgg Lﬁl Li5) - det Lﬁl € A.
Theorem. Ber(KL) = Ber(K) - Ber(L).

Ber(Epym +€L) = 1 +estrl, €2 = 0.

Berexp L = eStt,
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Superdomains

A superdomain of dimension n|m
U=U,C>*U)), UCR" C®U)=C>U)®N(m).
Let £1,...,€™ be generators of A(m), then any f € C*°({) can be
written as
F=F+d > fa a8 Fifay e, € COU).
r=1a1<-<a,

xelU = f(x):=Ff(x)eR
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Superdomains

A morphism of superdomains:
p:U=(U,CoU)) =V =(V,C7(V))

is a pair

such that
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Superdomains

If o = (¢,1*) : V — W is another morphism, then the

decomposition is defined as

Yvop= (Yo e o) U= W.

@ :U —Vis called a diffeomorphism if it admits an inverse

morphism.
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Example.

The inclusion
i=0,"):U=U, (x)=x, i*(f)=F.
The projection

p=(pp):U—=U, p(x)=x, p(f)=F.
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Proposition. For any morphism of superalgebras
©*: C*®(V) — C>°(U) there exists a unique continuous map

@ U — V such that ¢ = (B, ¢*) is a morphism from U to V.

Proof. The composition
C®(V) = C(V) = C®(U) — C=(V)

defines map ¢ : U — V/, which is compatible with ¢*.
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Corollary. For any morphism s : C*°(U) — R there exists a unique

point x € U such that s(f) = f(x).

Proof. Since R = C*°(pt), ¢* = s defines ¢ : pt — U.
Let x = @(pt) € U.
Since ¢*(f) € R,

v (f) = " (F)(pt) = F(B(pt)) = f(x)-
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Systems of coordinates.

Consider a superdomain U = (U, C*(U) = C>®(U) @ A(m)).

Let x!, ..., x" be coordinates on U; &1, ..., €™ odd generators

of A(m).

The superfunctions x!, ..., x", &L, ..., €™ are called coordinates on /.

Denotation (x,£%), or (xa), xnte = ¢a,
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Vector fields on U. Ty = (Tu)s @ (Tu)1,

|X| =i, X is R-linear
(Tu); = ¢ X : C°(U) — C=(U)
{ X(fg) = X(f)g + (1)foX(g)}

Define the vector fields 0,; and Oz« assuming

of
Di(FEM ... €)= ==

o B

r

0o (FE™ -£7) = D (—1) 00 FEh o 05,

s=1
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Proposition. The C°(U)-module Ty is free of rank n|m
Tu = C®(U) @r spang{0,1, ..., O¢m }.

Proof. Let X € Tyy. We claim that X = (Xx?)0.,.

Consider
X' = X = (%), X(fg) = X'(F)g + (~1)IX'IX'(g).
For f € C®(U) let X'(f) = >° X0, o, (F)EX - €%,

then XJ, ., : C°°(U) — C*>(V),
041, ,a,(fg) ..7a,(f)g + fX(ézl,...7ar(g)7 Oc;[7 ,Ocr(X ) = O
= Xiy..a =0 X(f)=0

Moreover, X'(¢*) =0 = X' =0.
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Lemma. Let ¢ : i/ — V be a morphism, then

O o Ot (yP) L[ Of
axa(*" f)_z oxa ¥ oyb )’

b

feCcoW).
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Theorem. If ¢ : U — V is a morphism and y!,....y", 7%, ....n° are

coordinates on V, then the functions

o*(y1), ..., o (y"), ©*(nh), ..., ©*(n°) uniquely define .

Proof. Note: if g =3 ga,,....a,§ - - £ € C°(U), then

8o,eoap = (Ogow -~ Opn g)™.

First let f = f(y!,...,y") € C®(V), then we may find *(f) using
the previous formula and the lemma:

e eop’(F) = Xy 258007 (85) = 32, 25006 (25).

In general, if f =3 fs, 5,0 0% € C®(V), then

O (F) = 2 ©*(f3,,...,8,)0" (0°1) - - - ©*(6%).




Superdomains

This gives the so-called symbolic way of calculation: if ¢/ and V
are superdomains with coordinates (x,¢) = (x/,£%) and
(v,0) = (y*,6%), a morphism ¢ : U — V can be written

symbolically

go:(x,&)'—>(y,¢9), y:y(X7£)70:9(X7§)7

where in fact y* = o*(y¥) = yK(x,£2), 0° = ©*(6°) = 05(x', £2).
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We may write ¢*(f)(x', %) = f(y/(x",£%),0(x',£Y)) and find this

function using the above proof.

Example. Let i = V = R? with the coordinates x, &1, €2 and ¢

is given by

) =x+8e? (g =€ (@) =¢
Let f = f(x), then
fx +€1€%) = (p*f)(x. €', 6),
(0 F)(x, 61, €2) = (9*F)™ (x) + (¢"Fra(x)EE%,
(*F)~(x) = f(x),



(" P12 = (020a¢7(F))™ = (92 (01 (#" (X)) (0xF)))™ =
(0e2(E2¢* (0xF)))™ = (0*(OxF))™ — (2020 (Ox))™ = Oxf .

Thus, f(x 4 £1€2) = f(x) + O, f(x)£1€2
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We see that if f € C>°(V'l5), then we may consider the expression

f(g17 <y 8ry hlv ceey h5)7

where g1, ...,&r and hy, ..., h, are respectively even and odd

functions on some U.
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Let x%, ..., x" &L, ..., €™ be coordinates on U. If o : U — V' is a
diffeomorphism and y*, ..., y". 1, ...,n™ are coordinates on V as

above,

then the functions ©*(y1), ..., o*(y"), ¢*(1'), ..., ¢*(n™) are also

called coordinates on U/.

In that case ©*(y1), ..., 0*(y") are not necessary coordinates on U.

By the above considerations, the expression

f(y/,0%) = f(x'(y,0°),(y/,6%)) makes sense.
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Examples of morphisms.
1. ¢ : R" — RKIm:

since (0°)2 =0, (¢*(0°))?> =0,
but ¢*(6%) € C®(R") = ¢*(°) =0,
thus ¢ is given by @ : R” — R¥.
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2. p: ROI2 — pgnlO;
feC®M=— ¢*(f)=a(f)+ b(f)'€?, a(f),b(f) € R.

v*(fg) = ¢*(f)y*(g) = alfg) + b(fg)s'¢* =

a(f)b(f) + (a(g)b(f) + a(f)b(g))E €2,

= a(fg) = a(f)a(g), b(fg) = a(g)b(f) + a(f)b(g)

— a: C®M — R is a homomorphism = 3x € M, a(f) = f(x),
finally, b(fg) = b(g)f(x) + f(x)b(g), i.e. b€ T M,

Thus, ¢ is defined by a point x € m and a tangent vector
be T.M, ¢*(f) = f(x) + b(f)E1¢2.



Superdomains

Example. Let E — U be a vector bundle over U,
U= (U,T(U,AE)).
If €1,...,€™ are generators of ['(U,AE), then x1, ..., x", & ... €m
are coordinates on U.
Any automorphism ¢ of the bundle AE — U preserving the parity
defines the automorphism of U:
P (x) = O X,

w*(ga) - Z Z (1051.-.112,4_1 (Xl, ---,Xn)ga1 .- -f‘”"*’l,

r>0 a1 <---<agr41
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Any morphism of U has the coordinate form

©*(x") = O(x, ...,X")—i—z Z goglmom(xl, ey XT)ENL g

r>1 a1 <---<opr

¢*(£a) - Z Z @gl...a2r+1 (X17 "‘7Xn)§al Tt €a2r+1.

r>0 a1 <---<aprii
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Let ¢ : U — V be a morphism and X € T;;. We get the map
Xop*: C®(V) = C®(U).

) =5, 25000 (2, Fe Cx(v),

Lemma. (

In the matrix form:

A(p*f) e yl) A n?) * Of
ox! — ox! ox! . oyl
A(p*f) ANe*yh)  (p*nf) « Of
oga OEa oga Y P
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Define the Jacoby matrix of ¢:
e yl)  AernP) *t

J — ox! ‘ ox' —
() aery))  Oe*n?)
o ot
Ay . ey _aletyh) . _deyh)
ox! Ox" OET DEm
oe*y") . ey _ae*y) . _ Oty
Ox1 oxn 861 afm
ANe*nY) . et Aern) . de™h)
Ox1 Ox" 8{1 35’"
oe*n®) . Oe*n’)  Ae'n®) . A(¢*n°)
ax1 axn DElL DEm
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Lemma. If o : U4/ — V and ¢ : V — W are morphisms, then

J(Wop) =" (J(¥)) - Jp).
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Berezin integral.

Let x1,...,x" &1, ..., €™ be coordinates on U such that x!, ..., x"

are coordinates on U; let f € C*(U). to define [,, f assume the
following:
/ d¢* =0, / €rde =1, €de = —defe?, hdx = dx €
Using that, we get

/ dxt - dxdEL - demf = (~1)" 5 / dxt - dx .

u U
Note that

/udxl---dx"dﬁl---dﬁmf:/del---dx”(?gl---agmf.
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Theorem. Let ¢ : U/ — V be a diffeomorphism of superdomains.

Let f € C*°(V) have a compact support. Then

/vf:/ugo*f-Ber(J(gp)).
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Supermanifolds

Sheaves. Let M be a topological space. A sheaf F of algebras (vector

spaces, groups,...) on M is an assignment
U~ F(U)

to each open subset U C M of an algebra (vector space, group) F(U)
such that the following conditions are satisfied.

If V C U, then there exists a homomorphism map
pU,VZ]:(U)—>]:(V), fi—>pu7\/(f)

such that 1) pUU = id; 2) PW.v = PU,V ° PW,U, vcucWw
3) if (U;) is a covering of U, f; € F(U:), pu,,unu,(f) = pu,unu,(f),
then there exists a unique f € F(U) such that py y,f = f;.
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A morphism ¢ : F — T of two sheaves on M is a collection of
maps

p(U): F(U) = T(U),

U C M is open such that

ruvop(U)=9(V)opyy, VCU.

Anton Galaev Intoduction to Supergeometry



Supermanifolds
Lie supergroups
Functor of points
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Example. M is a smooth manifold, and Cy; is the sheaf of
smooth functions on M: C7(U) are smooth functions on the

subset U C M.

Note that a smooth manifolds may be defined as a pair (M, C7),
where M is a Hausdorf topological space, and Cy; is a sheaf of
commutative algebras on M locally isomorphic to the sheaf of

smooth functions on an open subset of R”.

Anton Galaev Intoduction to Supergeometry



Supermanifolds
Lie supergroups
Functor of points

Supermanifolds

Example. E — M is a vector bundle over a smooth manifold M,

U+ T(U, E) is the sheaf of smooth sections of E.

Note that this sheaf allows to reconstruct E.

Anton Galaev Intoduction to Supergeometry



Supermanifolds
Lie supergroups
Functor of points

Supermanifolds

Definition of a supermanifold:

A supermanifold of dimension n|m is a pair M = (M, Ox), where
M is a Hausdorf topological space, and O, is a sheaf of
commutative superalgebras on M locally isomorphic to the sheaf of

superfunctions on an open subset of R"I™.
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A morphism of two supermanifolds ¢ : M — N is a pair
© = (P, ¢*), where $ : M — N is a continuous map and a

morphism of sheaves

0" 1 On = O,

here O\ is the induced sheaf on N:
PsOMm(U) = Op(p~ ' (U)), UCN.
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Consider M and define the sheaf Cy:
Cii (U) = Opm(U)/(Om(U)s1).

Then Cjy defines the structure of a smooth manifold on M.
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Functor of points
The inclusion
i=") M= M, i(x)=x, i*(f)="F,
where
f e Om(U) = F e Cii(U) = Om(U)/(Om(U)7)-
If there exists a splitting Oa(U) = CiP(U) @ (Oa(U)g), then

there is an inclusion Cp7(U) C Oaq(U), and one considers the

projection

p=(Bp"): M= M, B(x)=x, p(F)="F,
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Example. Let E — M be a vector bundle over M, define

Om(U) =T(U,AE), UcC M.
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Definition of a supermanifold using local charts

A coordinate chart on a topological space M is a pair (U, c), where
U C R"™ is a superdomain, and ¢ : U — M is a homeomorphism

on ¢(U).

Two charts (Ui, 1) and (Uz, cp) are compatible, if there exists a

diffeomorphism
M2 (Urz, C¥UL|uy,) = (Ua1, C™Ualuy,), A1z =6 o cilug,
Uz = ¢ Ha(U) Ne(l)),  Uan = ¢ Ha(l) N e(l))
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An atlas on a topological space M is a set of compatible charts
((Ua, ca);Yap) such that Uyca(Us) = M, v34 = 7;61'
YapVp5V6a = id.

A supermanifold M is a pair: a topological space M and an atlas

((Ua,Ca),’Yaﬂ)-
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Product of supermanifolds

If 4 and V are superdomains with the coordinates
XU xm el em oyl Lyt 0, 0% thenU x Vs a
superdomain with the base U x V' and coordinates

1 m 1 r ¢1 m pl s
Xy, Xy Ly e L ET 000,

If M = (M, Uy, ), Vap) and N = (N, (Vy, cu), V) are
supermanifolds, then the product M x N is defined by

(M X N, (Ua XV, Ca X Cu)sYaB X Yuv)-
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Theorem of Batchelor (1979).

Let M = (M, Opq) be a supermanifold. Then there exists a vector
bundle E — M such that M ~ (M,T'(-,AE)).

Moreover, there is the following one-to-one correspondence:

vector bundles of rank m
Supermanifolds

over n-dim. smooth
of dim. n|m mod. —

manifolds mod.
isomorphisms of supermf.

isom. of vector bundles.

\

Morphisms of supermanifolds are in general not induced by

morphisms of vector bundles!
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The tangent sheaf: Tyx = (Tim)g ® (Tm)1s

(Tm)i(U) =
|X| =i, X is R-linear

X : Op(U) = Opa(U)
X(fg) = X(f)g + (—1)"1XI£x(g)

The vector fields 0; = 0,i, 0o = Oca form a local basis of Ty (V)

= Tam is a locally free sheaf of supermodules over O 4
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Functor of points

x € M, the tangent space:

TM = {X : Onmx = RIX(fg) = X(Fg(x)+(=1)"XIF(x) X (g)}.

The vectors (9x1)x, .., (O¢gm)x span TeM ((Oxa)xf = (Oxaf)(x)).

Note: (TxM)5 = TM.

Anton Galaev Intoduction to Supergeometry



Supermanifolds
Lie supergroups

Supermanifolds
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A Lie supergroup is a supermanifold G = (G, Og) together with
three morphisms p: G xG —- G, i:G— G, e: RO g

x G
\ (‘d’e\ X
gxg G gxrO g1 2G
N N
k / m /
7GxG GxG
GxgG
\+© K
g e N g
/éer/ /
GxG
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Action of a Lie supergroup G on a supermanifold M: is a
morphism

a:GgxM—-M

such that
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The Lie superalgebra of a Lie supergroup.

A vectorfield X € 7g(G) is called left-invariant if

(1eX)ou"=pu"oX:0g6(G) = Ogxg(G x G).

The Lie superalgebra g of the Lie supergroup G is the Lie

superalgebra of left-invariant vector fields on G.
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Proposition. The vector superspace g can be identified with the

tangent space T¢G.

The isomorphism is given by

Xe € TeG— X=(1®Xe)opu* €g.

Note: gg is the Lie algebra of G.
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Super Harish-Chandra pairs.

The Lie supergroup G defines canonically the pair (G, g),
g5 = Lie(G);

there exists Ad : G — gl(g),

Ad’Gxgﬁ = Ad67 dAd‘g()Xgi = ['7 ']96><91'

Conversely, any such pair (G, g) defines a Lie supergroup G.
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Example. An action a: G x M — M can be given by an action

of G on M and by a morphism
g = (Tm(M))°

such that the differential of the action of G coincides with the

representation of gg.
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Example. A representation of G on a vector superspace V consists

of a representation of G on V and of a morphism
g — gl(V)

such that the differential of the representation of G coincides with

the representation of gg.
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Example.
GL(n|m,R) = (GL(n, R) x GL(m,R), gl(n|m, R)),

OSp(n|2m,R) = (O(n) x Sp(2m, R), osp(n|2m, R)).
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Functor of points.

Let M be a fixed supermanifold, and S is another supermanifold.

An S-point of M is a morphism S — M.
The set of S-points of M:
M(S) = Hom(S, M).
Any morphism ¢ : S — S defines the morphism
M(@) - M(S2) = M(S1), ¢ o

The map § — M(S) is a contravariant functor from the category

of supermanifolds to the category of sets.
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A morphism of supermanifolds ¢ : M — A induces the map

ps : M(S) = N(S), = por

Yoneda’s Lemma. For given maps {fs : M(S) — N(S)}s that
are functorial in S, there exists a unique morphism ¢ : M — N
such that ps = fs.

a:T =S

fr
M(T) N(T)
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Proof. Definition of ¢ : M — N:

o = fpm(idag), where fa 0 M(M) = N (M)

Proof of the equality fs = s : M(S) = N(S): Let a € M(S),
ie.a:S—- M,

MM) -2 A (M)

(@)

M(E) —— N(S)

ps(a) = poa = fy(idy) o a = N(a)(fm(idm)) =
fs o M(a)(idpy) = fs o a = fs(«)
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Proposition. If M and A are supermanifolds, then

Hom(M, N) = Hom(Opr(N), Op(M)).
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Example. The supermanifold M = R, Any S-point
¢ : S — RO is defined by the morphism

¢* 1 C°(RU) = R¢ — O5(S),

which is given by the odd superfunction ¢*(&) of Os(S);. This
superfunction describes elements of Ro‘l(S), i.e. it plays the role
of usual coordinate on this space, we denote it simply by &.

If a:7 — S is a morphism than
M(a) : M(8) = Os(S)1 = M(T) = O7(T)1, M(a)(p) = poa = o,

i.e. the map M(a) is given by £ — a*(§).

Thus, ROL(S) = 0s(S)1, M(a) = a*.
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Example. The supermanifold R"™. Any S-point ¢ : S — R"™ is

defined by the morphism
o CR(RM) = C°(R") @ A(m) — Os(S),
which is given by n even and m odd elements of Os(S),
& (0, @ (X7, 5(€Y), e 67 (ET),  ence,
R77(S) = Os(S)g @ Os(S)" = (Os(S) @ RI™.
Let us denote the above functions again by
Xt x e L em.

These coordinates describe the elements of R"I™(S).
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If «:T — S is a morphism then
M(a) : M(S) = M(T), M(a)p=poa,

and M(a) is defined by a*(¢*x1), ...,a*(p*¢™), i.e. M(a) = a*.
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Any morphism ¢ : R"™ — R’IS is defined by the morphisms

vs : RM™(S) — R’15(S) that can be described in coordinates:

cpg(xl, &M = (yl, s 60°).

This gives an explanation to the symbolic way of calculation: if
M and N are supermanifolds with local coordinates
(x,€) = (x,£%) and (y,0) = (y*,6°), a morphism ¢ : M — N

can be written symbolically

w:(ng)'_)(Yae)a y:y(x7£)70:0(xag)a

where in fact y* = o*(y¥) = y*(x',£%), 07 = p*(87) = 6°(x', £%).
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Example. (The supertranslation group of dimension 1|1)

Consider the supermanifold RI! and define the structure of the Lie

supergroup on it
I Rlll % Rlll N Rlll, M*(X) — X,—l-X,/—i—f/E”, M*(g) _ £/+§”-

If we consider (x, &) as abstract coordinates on the set of

(S-points) of R, then the multiplication is given by

((legl)’ (X//7§//)) — (XI + X// + 5/5//’5/ + é-//)
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Exercise. The Lie superalgebra of R is spanned by the vector

fields 0 and D = —£0, + O¢;

[D, D] = 2D? = —20,.
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A Lie supergroup can be defined in terms of its S-points:
A supermanifold G is a Lie supergroup iff

for every supermanifold S, G(S) is a group, and for any morphism
a: T — S of supermanifolds, G(«) : G(S) — G(T) is a group

homomorphism.

The action of G on M can be described as the action of the group
G(S) on the set M(S),

as : G(S) x M(S) — M(S).
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Example.

A B
Recall that Mat(n|m,R) = ;
c D
A0 0 B
Mat(n|m,R)5 = , Mat(n|m,R); =
0 D c o

We may identify this space with R +m?[2nm,

We have the following coordinates: x;j, ya3, Oia, Oai,
A B A B

X,'j = A,'J'7 Hia = B,’a,...

c D Cc D
These coordinates is a basis of Mat(n|m,R)*.
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As the supermanifold,

Mat(n|m,R) = (Mat(n,R) x Mat(m,R), C>(Mat(n|m,R))).
Define the map

w=(f1, u*) : Mat(n|m,R) x Mat(n|m,R) — Mat(n|m,R),

ii is the multiplication of matrices, u* = mult®, where

mult : Mat(n|m,R) ® Mat(n|m,R) — Mat(n|m,R) is the

multiplication.
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The subset GL(n,R) x GL(m,R) C Mat(n,R) x Mat(m,R) is

open.

Consider the superdomain

GL(nm,R)
= (GL(an) X GL(maR)a COO(Mat(n|maR))|GL(n,R)XGL(m,R))'

Together with the multiplication p it is a Lie supergroup.

Anton Galaev Intoduction to Supergeometry



Supermanifolds
Lie supergroups
Functor of points

Supermanifolds

Recall that R"™(S) = (Os5(S) ® R"™)5. Hence,
Mat(n|m,R)(S) = (Os(S)®Mat(n|m,R))s = Mat(n|m, Os(S));.

The set Mat(n|m, Os(S))g can be viewed as the set of
endomorphisms of the Os(S)z-module

R"M(S) = (Os(S) @ R"™)g.
The subset of automorphisms is the subgroup GL(n|m, Os(S)).

The Lie supergroup GL(n|m,R) can be described in terms of the
functor of point: S — GL(n|m,R)(S) = GL(n|m, Os(5)).
The multiplication ug is the multiplication of matrices.
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Supersymmetries

The Poincaré supergroup.

Recall that the Poincaré group
P =0(1,3) KR"?

is the group of isometries of the Minkowski space R13; it is the full

symmetry of special Relativity.

In quantum field theory, unitary representations of P classify free

elementary particles.
Sometimes P is defined as P = Spin(1,3) <R3,

More generally, P = Spin(V) AV, V = RLA=1 or V = RPA,



Supersymmetries

The Poincaré algebra p = so(V) x V, V = RLn-1
[A, B] = [A, B]ﬁa(v), [A, X]=AX, [X,Y]=0,A Beso(V), X,Y e V.

N-extended Poincaré superalgebra is a Lie superalgebra

g7 is the direct sum of N spinor modules of so(V),

[V,91] = 0, [, ]lso(v)xg; is given by the spinor representation,

[o1,01] C V.

N-extended Poincaré supergroup is the Lie supergroup given by

the Harish-Chandra pair (P, g).



Supersymmetries

In supersymmetric quantum theory, irreducible unitary
representations of the Poincaré superalgebra classify elementary
superparticles. The restriction of the representation to the
underlying Poincaré algebra gives several irreducible representations
of it, i.e. a collection of ordinary particles, called multiplet. The

members of the multiplet are called superpartners of each-other.
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Supersymmetries

Classification of N-extended Poincaré superalgebras:

D.V. Alekseevsky, V. Cortés 1997.
Example. N =1
9=05901, G=Pp 01=9,
it is enough to describe all so(V/)-equivariant maps
[ llses : Sym*S = V,

the dimension of the space of such maps is the multiplicity of V in

the so(V)-module Sym?V.

Letn=4, g=pDg;, »p=s0(1,3)x R
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Supersymmetries

Minkowski superspace M is the super Lie group given by super

Harish-Chandra pair (V,V @ S), where V is the Minkowski space

(considered as the abilian Lie group), V & S C g is the subalgebra,
in particular, [V, V] =[V,S5] =0, [5,5] =0.

The Poincaré supergroup P is the group of supersymmetries of M.

The field equations on M should be invariant w.r.t. the

action of P.
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Supersymmetries

M = R¥* with the coordinates x!, ..., x x4 et et

g=p®S, p=s0(l,3)x R173, S = R* (Majorana spinors)
Po,..,Ps € R, Q1,...Qu €S, [Qu,Qs] =T.zPi

The representation of the supersymmetry:

D; = 0;,
i j 1 @
Dyj = x'0; = x0; + 2 (75) 36" Ou

1 .
_ i B,
D, = Eraﬁg O + 0q.
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Supersymmetries

Super conformal algebra of Wess and Zumino (1974).
This is the first known example of a simple Lie algebra.

g5 = 50(4,2) ®u(l) ~ su(2,2) ®u(1), g7 =C>?
g = su(2,2|1) = osp(4,4|2) Nsl(4]2,C)

Note that SO°(4,2) is the connected group of isometries of AdS°.

The corresponding homogenious superspace is AdS®l8.
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